Graphs with fourth Laplacian eigenvalue less than two

نویسنده

  • Xiao-Dong Zhang
چکیده

In this paper, all connected graphs with the fourth largest Laplacian eigenvalue less than two are determined, which are used to characterize all connected graphs with exactly three Laplacian eigenvalues no less than two. Moreover, we determine bipartite graphs such that the adjacency matrices of their line graphs have exactly three nonnegative eigenvalues. © 2003 Elsevier Ltd. All rights reserved. MSC: 05C50; 05C75; 15A18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipartite graphs with small third Laplacian eigenvalue

In this paper, all connected bipartite graphs are characterized whose third largest Laplacian eigenvalue is less than three. Moreover, the result is used to characterize all connected bipartite graphs with exactly two Laplacian eigenvalues not less than three, and all connected line graphs of bipartite graphs with the third eigenvalue of their adjacency matrices less than one. c © 2003 Elsevier...

متن کامل

On graphs with largest Laplacian eigenvalue at most 4

In this paper graphs with the largest Laplacian eigenvalue at most 4 are characterized. Using this we show that the graphs with the largest Laplacian eigenvalue less than 4 are determined by their Laplacian spectra. Moreover, we prove that ones with no isolated vertex are determined by their adjacency spectra.

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

Graphs with small second largest Laplacian eigenvalue

Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2003